Learn more about Praxair’s Argon Oxygen Decarburization process that is used to make over 75% of the world’s stainless steel. Argon Oxygen Decarburization (AOD) Treatment is the recognized standard for stainless steel refining worldwide. Whether you are producing castings, wrought . Argon Oxygen Decarburization, frequently referred to as “AOD”, is an advanced technology for the refinement of iron, nickel, and cobalt based alloys. By.

Author: Teshicage Grogal
Country: Kosovo
Language: English (Spanish)
Genre: Automotive
Published (Last): 12 June 2009
Pages: 464
PDF File Size: 14.66 Mb
ePub File Size: 18.4 Mb
ISBN: 155-2-33220-150-8
Downloads: 23265
Price: Free* [*Free Regsitration Required]
Uploader: Mezikora

Posted by Satyendra on Apr 28, in Technical 1 comment. An AOD converter is shown in Fig 1.

AOD Refining | Argon Oxygen Decarburization | MetalTek

The process is very popular because it combines higher metallic yields with lower material costs. It provides an economical way to produce stainless steel with a minimum loss of precious elements.

It is part of a duplex process in which scrap decarnurization virgin raw materials are first melted in an electric arc furnace EAF or induction furnace IF. The molten metal is then decarburized and refined in an AOD converter to less than 0.

The key feature in the AOD converter is that oxygen for decarburization is mixed with inert gas such as argon or nitrogen and injected through submerged tuyeres. This argon dilution of oxygen minimizes unwanted oxidation of precious elements contained in specialty steels, such as chromium.

Other benefits of AOD process include pinpoint accuracy in chemistry control down to 0. The end result is a cleaner metal coupled with increased productivity. AOD process uses dilution technique for the dfcarburization of steel bath.

The amount of stirring energy from the gas blown through the subsurface tuyeres and the formation of the carbon monoxide deep within the metal bath results in the converter processes being among the most intensely stirred metallurgical reactors.

The intimate gas — metal contact and excellent slag — metal mixing facilitate refining reactions. AOD process refining has three major steps. These are i decarburization, ii reduction, and iii final chemistry and temperature trimming. The liquid steel, which contains most of the chromium and nickel needed to meet the arogn-oxygen heat composition, is tapped at a temperature of to deg C from the EAF or the IF into a transfer ladle.

The liquid metal is transferred from transfer ladle to AOD converter. The AOD converter can be decarbudization downwards so that the side mounted tuyeres are above the bath level during charging of the liquid steel.

After the transfer of liquid steel containing iron, chromium, carbon and nickel from EAF or IF to the AOD converter, high carbon ferro chrome is added and the blow decarvurization started with the blowing of inert gas argon, nitrogen and oxygen mixture. In the initial stage, oxygen to argon in the ratio ranging from 5: The ratio is lowered with the progress decraburization the decarburization.

Since the blowing is done along with argon it is possible to carry out the decarburization at a lower temperature. Argpn-oxygen major benefit associated with the dilution process comes into play when the oxygen to inert gas ratio is 1: Oxidation of carbon continues, but oxidation of chromium is limited. This vecarburization due to the very low oxygen potential of the gas mixture, which minimizes chromium oxidation.

Argon Oxygen Decarburization Process

The blow is continued to attain 0. Process gases are injected through submerged tuyeres that are installed in the side wall or bottom of the converter. Side wall injection usually imparts maximum stirring energy to the bath for greatest efficiency of mixing. Bottom injection usually improves wear characteristics in the barrel section of the converter. The number and relative positioning of tuyeres is determined in part by converter size, range of heat sizes, process gas flow rates and types of alloys refined.

  IEC 62220-1 PDF

The gas control system supplies the process gases at nominal rates of 1. The system accurately controls the flow rates and monitors the amount of gas injected into the bath to enable the operator to control the process and measure the total oxygen injected.

Decarburization occurs when dissolved carbon reduces the chromium and iron oxides that form. Decarburisation decarburization reactions are as follow. Decarburization occurs on the surface of rising bubbles that form from either decaburization inert gas that is injected or on the surface of chromium oxide particles that are being reduced and generating carbon mono oxide CO. During decarburization, additions are made for obtaining the argon-oxhgen final chemical composition. These additions usually consist of desired amounts of high carbon ferrochromium, stainless steel scrap, carbon steel scrap, nickel, iron, high argon-oxygfn ferromanganese, and molybdenum oxide.

These additions also serve to reduce the bath temperature as carbon and chromium oxidations are exothermic. In general, the bath temperature is controlled to less than deg C. During the final stage of blowing, the ratio of oxygen to argon is changed to 1: The next step is the reduction step, in which the reduction additions decarburizatiln charged and stirred with an decarburizatipn gas for a desired time.

The bath is then stirred with inert gas, typically for around five to eight minutes. Additional silicon addition is needed if requirement of silicon is there to meet the silicon specification of some of the stainless steels. Careful manipulation of decarburixation, as it precipitates in the reaction, is important.

Any chromium oxide not reduced by carbon ends up in the slag, which can form a complex spinel. The decarburizatuon of reduction step is dependent on many factors including slag basicity and composition, temperature, mixing conditions in the converter and solid addition dissolution kinetics. During the oxygen blow, silicon is oxidized before carbon. Lime and dolomitic lime are sometimes added before the end of the blow to cool the bath and to reduce the volume of reduction additions. The formation of a high basicity slag and the reduction of oxygen potential in the metal bath are good conditions for sulfur removal.

For example, with starting sulphur of 0. The length of the blow period is determined by the starting carbon and silicon levels of the hot metal charged to the AOD converter. Decarburization time ranges from 20 to 35 minutes in modern converters start from 1. Usually, the converter is turned down to a horizontal position and a sample of the liquid steel eecarburization taken for analyses at a carbon level of about 0.

Sulfur removal is a slag — metal reaction that occurs during the reduction phase of the process. Phosphorus, which requires oxidizing conditions, cannot be removed in the converter processing. Nitrogen control is a gas — metal reaction.

Depending on final nitrogen specification for the stainless steel grade, the inert gas during the initial stages of decarburization can be nitrogen. After a certain carbon level is achieved, the nitrogen gas is replaced by argon. Such an approach is usually practiced by steelmakers to reduce argon usage and costs and still achieve a desired nitrogen specification.

After the change from nitrogen to argon, nitrogen is removed from the bath both by evolved carbon monoxide and argon. Volatile elements with high vapour pressures, such as lead, zinc, and bismuth, are removed during the decarburization period.

The formation of high basic slag and the reduction of oxygen potential in the liquid steel bath are good conditions for sulphur removal. These are achieved by having a high lime concentration in the slag and a low oxygen activity in the metal bath.

Argon Oxygen Decarburization Process |

The transfer of sulphur argon-oxygdn slag takes place as per the following reaction. Additions of lime are made to dilute the sulphur in the liquid steel bath. Also, aluminum or silicon may be added to remove oxygen. For example, decaburization a start sulphur of 0. If the grade to be produced requires an extra low sulphur level, the bath is deslagged after the reduction step and another basic slag is added. The liquid steel and the fluxes are then mixed to complete the desulfurization reaction.


In modern practices a sulphur level of 0.

Other trimming alloy additions might be added at the end of decabrurization step. After sulphur levels have been achieved the xrgon-oxygen is removed from the AOD vessel and the metal bath is ready for tapping. Argon-odygen at this stage of the process, the chemistry of the liquid steel should meet the final specifications so that the heat can be tapped.

If necessary, additional raw materials may be charged for small chemistry adjustments before tapping. After tapping, the ladle is often stirred for composition homogenization and temperature uniformity along with flotation of inclusions. This is done in a ladle equipped with stirring facilities with or without the use of a ladle furnace.

After the ladle treatment, the steel is ready to be cast. In the early days of the AOD process, the converter was tilted for raw material additions as well as for taking samples and for measurement of temperature using immersion thermocouples.

Argon oxygen decarburization

The desire to increase the productivity has led to continuous charging of raw materials during the blow period as well as reduction period. Modern instrumentation has been developed which can take melt samples as well as steel temperatures using a specially designed sub lance with xrgon-oxygen converter in the upright position. AOD converter is a pear shaped vessel usually lined with basic refractory lining.

It has a removable, conical cover in place. Decarburjzation important feature of an AOD converter is that it is normally side blown. In case of those steel grades which can tolerate nitrogen, a mixture of oxygen and nitrogen can also be blown. As molten stainless steels do not generate foam, and most stainless steel refining processes are side or bottom-blown, the dimensions of a stainless refining converter are smaller than a comparable BOF basic oxygen furnace converter.

Typical internal volumes of AOD converters are in the range 0. For converters that tap into a ladle held by a crane, a sliced cone top section is often used. The slice portion allows the crane to come close to the converter mouth. Converters that tap into a ladle car usually have a BOF type concentric cone top section. At any given time, one of the converters is in the tiltable trunnion ring refining steel, a second newly lined converter is at a preheating station, and the third converter is at a reline station.

The converter in the trunnion ring typically can be replaced with a preheated converter in less than an hour. The AOD converter has tuyeres mounted in the sidewall or in the bottom. These tuyeres typically consist of a copper tube with a stainless steel outer argin-oxygen. An annulus is formed between the copper and stainless tubes.

Cooling gases blown through the outer annulus shroud form a metal or oxide accretion called a mushroom at the tuyere tip. This accretion protects the tuyere and surrounding refractory. Special designs exist for normalizing the flow in the annular gap.

Tuyere size and number depend decarburizwtion specific process parameters. There are usually between two and nine tuyeres in an AOD vessel.